

RA.2: Low Complexity, Al Based Fusion of Crowd-Sourced Heterogeneous Data Streams for Real-Time Threat Detection and Mitigation

Bahar Kor and Eric Miller, Tufts University bahar.kor@tufts.edu, eric.miller@tufts.edu

Addressing the Challenges

SENTRY Challenge

Problem: Identify, localize, and track over space and time evolving security threats from crowd-sourced data streams of opportunity

Importance and Challenges:

- This project seeks to provide DHS with principled, adaptive approach to the acquisition and processing of heterogeneous streams of data for threat mitigation
- Especially appropriate for venues where video may be limited/absent or where automated video processing methods are not available
- Crowd-sourced data streams could provide highly informative threat information.
- · Extraction of such information not trivial
- Find precursor signals or patterns that might provide some warning of an impending event
- Focus on sensor data from mobile devices (accelerometer now, eventually audio, video)

Accomplishments

Milestone 1: Simulation Environment Created

Objective: Create simulated accelerometer data for crowd of people moving in a realistic environment Approach:

- Used Unity software engine to simulate crowd motion in a transit platform scenario.
 - People entering platform moving to train doors.
 - People proceeding from train to platform exit.
 - People milling about on platform
- Post-process Unity data to create accelerometer traces
- · Can tune number of agents, arrival rates, speed etc.
- Easily generate data for hundreds or thousands of instances for Monte-Carlo analysis, construction of probabilistic or machine learning models, etc.
- Capable of simulating anomalous behaviors to test detection methods

Milestone 2: Problem Formulation & Lit. Review

Objective: Develop model and processing methods to detect anomalous events from crowd-sourced accelerometer data

Approach:

- On-going exploration of recent literature in areas including models of crowd motion, accelerometer time series processing, deep learning methods for anomaly detection, human activity models
- Initial approach using autoencoder techniques to learn low dimensional model for nominal behavior from which anomalous activity will be detected.

Challenge:

Large quantities of potentially informative exist but:

- Little or none is labeled → supervised machine learning methods cannot be used.
- The vast majority of the data would be from benign behaviors with very few threat cases → significant class imbalance problem

Approach:

- Build models defining nominal behaviors of crowds in a given scenario
- Develop methods for detecting (and eventually tracking) significant deviations, or anomalies, in crowd motion

Autoencoder Architecture for Anomaly Detection

Challenge:

- The methods require behavior data (in this case accelerometer) from "real" crowds in "real" scenarios.
- Such data do not exist and would be costly to obtain

Approach:

- Sophisticated crowd simulation tools have been developed in the video gaming industry
- Can be configured to accommodate the needs of this project

LScene

b) Appearance of suspected object

c) Flee from suspected object

c) Exit scene

Next Steps

Supporting the Virtual Sentry Framework:

- RA.1, RA.3, RB.1, RB.2, RC.2, RD.3: projects focusing on processing schemes, data sources, platforms, resource allocation, and crowd control.
- Will explore collaboration with Incorporate methods and codes in Virtual Sentry: Versatile Solutions for STCs and Real Time Decision Support using Big Data.

 Partnerships and Stakeholders:
- Prof. Miller will brief the PAB in June 2023 and meet with Cambridge Consultants in April 2023 to discuss collaboration building on the ideas in this project
- · Primary end-users of this project are venues such as schools houses of worship or lacking robust security installations
- FEMA's Response and Recovery Division and Center for Disaster Preparedness could leverage this tool to get real-time situational awareness as emergencies
- The app developed would serve as a force-multiplier for the Secret Service in securing public events while the data aggregated from this project would bolster real-time and location-based intelligence gathering.

Plans for Next Year

- · Transition simulation tool to broader community
- · Develop, test and refine methods to detect anomalous behaviors in crowds from accelerometer data
- Formulate approach to tracking evolving threat scenarios

Crowd Sourced data from mobile devices