

SENTRY Challenge

Use radar to detect large concealed person-worn metallic objects, including concealed weapons / IEDs in a crowd and provide real time detection of threats on people in STCP. Configure systems so that they are:

- Pervasive
- Massively networked
- Inexpensive
- Low maintenance
- Flexible

Couple radar with video for continuous tracking of suspicious individuals

Accomplishments

- Developed and applied FDFD computational model for metal objects on body
- Conceived and tested Luneburg Lens with reflectors as cheap multibeam radar antenna
- Developed a Deep Learning Model that can detect metallic objects in radar images:

Ground truth

3 radar images combined in RGB format

Predicted anomaly mask

RB.2: Stationary & Aerial Based Radar Detection of Concealed Threats

Mahshid Asri, Ann Morgenthaler, Carey Rappaport (NU) rappaport@coe.northeastern.edu

Fused standoff multibeam radar / video strategy remains fixed, determines the presence – and tracks threats, with no operator needed

- imaging features, identified through modeling
- off from beam to beam

Radar Detection:

- Signal to video to track suspects and report to Virtual Sentry
- Use as pro-active rather than a forensic tool
- Aim to be faster than metal detecting portals
- Design so that size, weight, power compatible with drone flight
- STCP stakeholders include city planners and leaders, first responders, and
- venue administrators who want to ensure the safety of pedestrians

The person walks toward the radar. Radar captures multiple snapshots

of the subject on the move.

- Configure sensors for best reporting to Virtual Sentry
- forms.

Addressing the Challenge

Ez (TM) IMAGE

Detect with mm-wave radar taking advantage of highly reflective anomalous

Use novel inexpensive multibeam antennas to scan full scene, pass suspect

FDFD computational modeling.

Next Steps

Continue work with industry (Leidos, Raytheon, Rogers, Fortify) to develop cost-effective network of radar units Develop strategy for venue-specific siting configuration: internal corridors in schools/stations, or approaches to facilities

Enlarge and generalize the simulated radar dataset for better results: include more body shapes and various anomaly

Combine data captured from video recording to radar images to enhance the accuracy of concealed weapon detection.

Networked stationary pole-mounted multi-beam radar with coupled video, scans pedestrians on city sidewalk for concealed threats and then follows suspects.

• Artificial intelligence is used to predict the location and shape of large metallic guns on the torso.