Active Shooter Tracking and Evacuation Routing for Survival (ASTERS)

Subhadeep Chakraborty

Associate Professor Mechanical Engineering University of Tennessee <u>schakrab@utk.edu</u> <u>http://volweb2.utk.edu/~schakrab/</u>

11/13/2023

ASTERS – Active Shooter Tracking and Evacuation Routing for Survival

- Space:
 - Response to active shooting events in schools
- Problem:
 - Uncertain knowledge about shooter's location and lack of guidance while escaping leading to fatal outcomes
- Solution:
 - Computer Vision based Gunman Detection and Tracking
 - Optimized Routing of evacuees to evade shooter and prevent crowding
 - Communication to Evacuees of Plans/Status
 - Education and Interaction with School Officials and security experts
- Results:
 - Training with a combination of actual texture, domain randomized synthetic data and real data produced highest precision (0.928)
 - ASTERS algorithm can reduce casualties by 56%, the time spent by evacuees in the shooter's line of sight by 52% and crowding by 53.3% compared to an intuitive natural response.
 - Participants (n=123) escaped significantly more quickly with dynamic signs compared to static (p=0.07) and reverse crowd (p=0.04)

Computer Vision based Gunman Detection

Training with a combination of synthetic data (both actual texture and domain randomized) and real data produced highest precision (0.928).

Combination	Number of images			Gunman detection			
	Real	AT	DR	Р	R	mAP@.5	mAP@.5:.95
Real Only	100	-	-	0.545	0.350	0.354	0.175
	300	-	-	0.438	0.240	0.228	0.147
	500	-	-	0.266	0.220	0.142	0.093
AT→DR→Real	-	800	5000	0.036	0.070	0.004	0.001
	100	800	5000	0.702	0.390	0.411	0.240
	300	800	5000	0.626	0.310	0.326	0.168
	500	800	5000	0.928	0.259	0.323	0.216

(c)

Optimized Evacuee Routing

ASTERS algorithm can reduce casualties by 56%, the time spent by evacuees in the shooter's line of sight by 52% and 53.3% reduction in crowding compared to an intuitive natural response.

Before

Minimum Risk

60

Communication to Evacuees

Participants (n=123) escaped significantly more quickly with dynamic signs compared to static (p=0.07) and reverse crowd (p=0.04)

Participants (n=123) encountered the shooter significantly more in the static signs (p=0.037) and reverse crowds (p=0.020)

Lessons learned

- Current practices leave a lot to be desired.
- In general, school personnel are very accepting of this idea and quick to see the value in this activity.
- Most feel more comfortable with a human-in-thedecision loop.
- Ethical dilemmas are too real for comfort.
- Funding drives most of the adoption decisions.
- But, if done right, there is immense potential for something like ASTERS to have a real impact.