Advanced Sensing Technologies for Threat Awareness and Mitigation

Carey Rappaport SENTRY Deputy Director RB Thrust Lead, Northeastern University c.rappaport@northeastern.edu

ADSA 27, November 15, 2023

Advanced Sensing Technologies for Threat Awareness - RB

Objectives: Develop sensors and sensing systems to detect and identify threats within Soft Targets and Crowded Places

- Research and develop pervasive, inexpensive, networked sensors to detect unusual concealed objects:
 - Large metallic objects: firearms, IEDs
 - Items with characteristic chemical signatures: explosives, gun oil
- Explore a range of sensors for fixed (on building or streetlight) and mobile (drone) deployment
 - Near-in vapor detection
 - Standoff laser telescopic chemical analysis
 - Multi-beam mm-wave high resolution imaging radar
 - RF situational awareness sensing
- Explore new sensing innovations for threat detection as they become available
- Interface with Virtual Sentry Framework to efficiently provide actionable sensor info
- Work with industry to engineer devices for eventual field implementation

RB.1: Chemical Sensors

RB.1A: Multi-Sensor Threat Assessment

Platforms Otto Gregory (URI) and Jimmie Oxley (URI)

The Digital Dog Nose (DDN)

Heat from catalytic decomposition of vapor

High throughput vapor sampling and active sniffing biomimetics

- Flow rates 330x dog's nose
- Standoff detection distance 16X

RB.1B MIR-LBS Multisensors: Detecting CBTs & other Chem Threats Using QCL Spectrometers (QCLS)

Samuel P. Hernández-Rivera (UPRM)

Spectra of CBTs simulants using Grazing Angle Probe-QCLS

- Al and ML models of CBTs trained with PCA models that explain their spectral variation
- Goal: Autonomous sensing using unmanned vehicles

RB.2: Electromagnetic Sensors for Threat Detection and Crowd Situational Awareness

RB.2A: Active mm-wave radar sensing of large concealed metallic threats Carey Rappaport (NEU)

- Advanced inexpensive multibeam antenna design
- Video tracking to cue radar
- Al image interpretation

RB.2B: Passive RF to locate and see behavior of crowds Scott Howard (ND)

- Distributed emission energy sensor network
- Neural networks and tomographic (Bayesian) reconstruction of emission maps
- Antennas for high spatial resolution

Deployed RF spectrum sensor used to monitor the RF environment. Sensors are scattered around an environment and used to estimate radio maps in real-time.

Standoff Chemical Detection of Threats

Develop novel laser sensors with sufficient sensitivity to detect & track distant vapor plumes

- Quantum cascade laser (QCL), midinfrared (MIR) laser spectroscopy, and reflected light telescope, all aimed at a vapor plume
- Detection distance as far as 300m
- Grid can detect plumes in any defined space
- Amenable to mobile platforms
- QCL systems mounted at check points may detect vehicle bombs before they enter cities

Digital Dog Nose Sensor Fingerprinting: Gun Oils & Interferents

- The DDN sensor "fingerprint" for two different gun oils compared to 2 primary oil ingredients and 3 interferents
- Gun oils produce a unique signature to that of the interferents upon interaction with the DDN sensor catalysts
- Selectively identify concealed firearms from their associated gun oils
- Additional gun oils and propellants (black powder) have been acquired to add to our library

	Al₂CuO₄	CuO	Fe ₂ O ₃	ІТО	MnO	SnO	wo
Hoppe's No. 9	+		-	+	+	+	+
Rem Oil	NR		-	+	NR	+	NR
2-propanol*	-		-	+	+	+	+
Ethanol*	+		+			+	+
Deodorant	NR		NR	+	NR	+	NR
Perfume	+		NR	+	NR	+	NR
Toothpaste	NR		NR	+	+	+	+

*Primary gun oil ingredients

Legend:

Green (+) \rightarrow Positive Response (Endothermic) Red (-) \rightarrow Negative Response (Exothermic)

 $NR \rightarrow No Response$

SENTRY

Radar Detection of Concealed Threats in Crowds at Distance

- Stationary pole-mounted inexpensive multi-beam radar
- Coupled with video for tracking suspicious individuals
- Multiple views enhances imaging --ISAR
- Scans city sidewalk
- Detects concealed metallic threats on pedestrians
- Uses AI target prediction

RF Situational Awareness

- Real-time picture of crowd behavior
 - Supplement video camera with "invisible" radio frequency (RF) emissions from cell phones, electronics, and vehicles
 - RF emissions finds location/size of groups and their behavior (frequencies and power form a "signature" of device behavior)
- Network of low-cost (<\$100 each) sensor nodes deployed as fixed infrastructure or on drones for ad-hoc infrastructure (e.g., temporary events)
- Project Aims
 - Develop the network infrastructure & data analysis for Virtual SENTRY framework

"RadioHound" RF sensing nodes

