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) So What? Who Cares?

« Space: Soft targets and crowded places (e.qg., schools ,
transportation systems)

* Problem: How fo best define, assess, predict, and minimize risks
and threats

« Solution: Developing interpretable machine learning and network
Ssimulation models; game-theoretical modeling; resource
allocation models; model validation using human subject
experiments

* Results: Risks and threats can be modelled and mitigated in
STCPs.

« TRL: 3



RC.1: Machine Intelligence for Effective Threat Deterrence
and Risk Mitigation at Soft Targets and Crowded Places
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RC.1: Machine Intelligence for Effective Threat Deterrence and Risk

Mitigation at Soft Targets and Crowded Places
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A Preliminary Multi-layer, Multi-pathway Diagram for K-12 School Security
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.Optimal Location of
Sensors/Cameras in

Venues

Working with floor plan layout and
utilizing 3D modeling software to model
what different types of cameras can see

Optimal location of sensors to cover the
critical pathway to reduce risks
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