
  

  

 

Transportation Network Risk and Disruption 

 

  
  

   

 

 

Kevin Shirley 

Appalachian State University 

 shirleykl1@appstate.edu 

 

Dimplekumar Chalishajar 

Virginia Military Institute  

chalishajardn@vmi.edu 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:shirleykl1@appstate.edu


Note to teachers: Solutions to exercises appear in red in the module.  

 

Summary of Module 

 

This module introduces the reader to the vulnerability analysis of a transportation system by 

modeling it using graphs or networks. Basic definitions and concepts from graph theory are 

introduced. Measures of node centrality are defined and illustrated. Using these concepts, 

hypothetical transportation systems are modeled and analyzed for their vulnerability to a failure 

or an attack. In the event of the disruption of a station or pathway, the consequences are 

quantified in terms of an increase in travel time or a reduction in the network capacity. 

  

Target Audience 

 

This module is written for undergraduate students in a freshman/sophomore level course in 

mathematics, engineering or environmental science. 

 

Prerequisites 

 

Students should be prepared for college level mathematics. 

  

Topics 

  

The topics in this module include graphs, transportation networks, measures of centrality, 

modeling transportation disruption, cost and loss of capacity. 

  

Goals 

  

Our goal is to introduce the student with minimal background to modeling a threat to a 

transportation network. 

  

Anticipated Number of Meetings 

  

2-3 Class periods.  

1 class period for covering background material for graphs and measures for centrality. 

1 class period for modeling transportation disruptions. 

1 class period for further researching a topic of interest or constructing a model for a local 

transportation network. 

 

 



Learning Outcomes 

 

Students completing this module will be able to: 

 

• Give definitions for and illustrations of basic graph theory concepts including: graph, 

node, edge, order, size, degree, neighborhood, path, distance, geodesic, bridge and cut-

node. 

• Interpret a transportation system modeled as a graph. 

• State and apply the definitions of measures of centrality of nodes such as degree centrality 

and closeness centrality. 

• Apply the centrality measures to a transportation network modeled as a graph. 

• Analyze a disruption to a transportation network modeled by a graph. 

Section 1.0 Introduction 

 

Transportation systems are the lifeblood of modern society, enabling the movement of people 

and goods, supporting economic growth and connecting communities. From road networks and 

railways to airports, seaports, and public transit systems, these infrastructures are essential for 

our daily lives. However, they are also susceptible to a wide range of vulnerabilities that can 

disrupt their functionality, leading to significant social, economic and environmental 

consequences. Businesses rely on transportation networks to move their products and services, 

and delays or interruptions can lead to financial losses. Individuals rely on them to access 

education, healthcare, employment and social services. Disruptions to this access can 

disproportionately affect vulnerable populations. Since transportation networks can have adverse 

environmental impacts, including emissions, habitat disruption and pollution, analyzing their 

vulnerabilities can help engineers design more sustainable and eco-friendly networks. Finally, 

transportation networks are considered critical infrastructure. Their vulnerability can be 

exploited by those with malicious intent. Ensuring their security is a matter of national 

importance. See [7] for a thorough discussion of transportation disruptions and their impacts. 

 

This module is designed to provide an introductory understanding of how the effects of a 

transportation network disruption can be modeled. Various factors make transportation systems 

susceptible to disruptions. Some examples of such factors are having a station or intersection 

located in a flood prone area or not having a robust way of connecting highly utilized stations or 

business districts within a city. To illustrate, in recent years there have been several bridge 

closures on major highways and interstates. One such closure was the I-40 bridge across the 

Mississippi River connecting West Memphis, AR to Memphis, TN on May 11, 2021. As 

reported in Kennedy [4] the closure was due to a fracture in a girder discovered during an 

inspection. The closure lasted almost four months. The total repair cost was $10 million. 



According to the Tennessee Department of Transportation, more than 40,000 vehicles cross the 

I-40 bridge daily, and about a quarter of them are trucks. The shutdown frustrated drivers, but 

also disrupted a major way of delivering goods across the country.  Hence, the consequences of 

having these disruptions may be severe. The Mississippi River bridge example demonstrates that 

when a disruption does occur, there is a cost associated with the inefficiency that results. More 

often than major disruptions such as a bridge closure, we experience local disruptions due to 

accidents, weather, maintenance, rail station flooding or security issues, and others.  We 

introduce the reader to how networks are modeled with graphs and how costs or inefficiencies 

from disruptions can be analyzed. By analyzing the characteristics of these networks, 

vulnerabilities, such as a network becoming disconnected, can be identified. Only by identifying 

and studying these vulnerabilities can risk managers begin to make the necessary 

recommendations to policy makers in order to create a more resilient system.   

 

Exercise 1. Find and research a local transportation disruption that has occurred in your region 

over the past several years. Describe the transportation network affected by the disruption. What 

caused the disruption? Describe the consequences and cost of the disruption. Did it have 

economic impacts? Did it have environmental impacts or affect vulnerable populations? How 

might this disruption have been avoided? Have the causes in this case been addressed and the 

transportation network been made more resilient?  

Section 2.0 Background material from Graph Theory 

 

We begin by defining and discussing the basic ideas from graph theory that will be necessary to 

model our transportation network.  

 

Definition. A graph G is a finite nonempty set V of objects called nodes (vertices), and a set E 

of two element subsets of V called edges.  

 

Definition. V(G) is the node set of 𝐺 and 𝐸(𝐺) is the edge set of 𝐺. The order of 𝐺 is the 

number of nodes in V(G). 

 

The graph G in Figure 1 has order 𝑛 = 7,  node set 𝑉(𝐺) = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔} and the edge set 

𝐸(𝐺) = {{𝑎, 𝑏}, {𝑏, 𝑑}, {𝑏, 𝑐}, {𝑑, 𝑒}, {𝑐, 𝑓}, {𝑒, 𝑓}, {𝑓, 𝑔}} .  We have labeled the edges on the 

graph to simplify the presentation, {𝑎, 𝑏} → 𝑒1, {𝑏, 𝑑} → 𝑒2, etc.   

 
Figure 1. Graph G 



 

Graphs can be used to model a wide range of real-world relationships, such as social networks, 

transportation systems, computer networks and more. We will use graphs to represent 

transportation networks. In a highway system, a node may represent a city, and the edge 

connecting two nodes may represent a highway.  In a rail or subway network, the nodes may 

represent stations and the edges may represent rails and other infrastructure connecting the 

stations. For a bus network, the nodes may represent stops and the edges may represent a 

pathway of connected streets between stops. To further describe a transportation network, we 

need to know more about nodes and edges, their characteristics and the graph theory vocabulary 

used to describe them. 

 

Definition. The degree of a node 𝑣 in a graph G is the number of edges that are incident to it and 

is denoted deg 𝑣 . 

 

Definition. Two nodes with an edge connecting them are adjacent nodes or neighbors. Also a 

neighborhood of a node is the set of all of its neighbors, denoted by 𝑁(𝑣) for a node 𝑣.  

 

In Figure 1, node b and node f  both have degree 3, whereas nodes c, d, and e each have degree 2. 

The neighborhood of node f, N(f) = {c, e, g}. One relationship that should be apparent is that deg 

𝑣 is the number of nodes in 𝑁(𝑣). 

 

We need a few more terms to describe the topology of our networks  

 

Definition. A path is a sequence of nodes where each adjacent pair is connected by an edge. A 

path is generally agreed to have no repeated nodes, except possibly the first node. The length of a 

path is the number of edges in it. 

 

Definition. A cycle is a path that starts and ends at the same node. A graph containing no cycles 

is called a tree. 

 

Definition. A graph is said to be connected if there is a path between any pair of nodes. If a 

graph is not connected, it may consist of multiple connected components. 

 

In Figure 1,  𝑃 = {𝑎, 𝑏, 𝑐, 𝑓, 𝑒}  is a path of length 4, and 𝐶 = {𝑓, 𝑒, 𝑑, 𝑏, 𝑐, 𝑓} is a cycle. 

 
Figure 2. Graph H 

 



 

 

Exercise 2. The graph H is given in Figure 2. Find each of the following for graph H. 

1. The degree of nodes 𝑎, 𝑑, and 𝑓. 

2. All of the cycles of graph H 

3. Find the path of shortest length connecting {𝑎, 𝑔}, {𝑐, 𝑓} and {𝑏, 𝑒}. 

4. The neighborhoods 𝑁(𝑐), 𝑁(𝑓), and 𝑁(𝑑). 

 

Solution. 

1.  deg 𝑎 = 3,  deg 𝑑 = 4, deg 𝑓 = 2 . 

2. 𝐶1 = {𝑎, 𝑏, 𝑐, 𝑎}, 𝐶2 = {𝑎, 𝑏, 𝑑, 𝑎}, 𝐶3 = {𝑎, 𝑐, 𝑑, 𝑎}, 𝐶4 = {𝑎, 𝑐, 𝑏, 𝑑, 𝑎},  𝐶5 =

{𝑏, 𝑑, 𝑐, 𝑏}, 𝐶6 = {𝑒, 𝑓, 𝑔, 𝑒}. 

3. Shortest length connecting {𝑎, 𝑔}: {𝑎, 𝑑, 𝑒, 𝑔},  {𝑐, 𝑓}:  {𝑐, 𝑑, 𝑒, 𝑓} 

{𝑏, 𝑒}:  {𝑏, 𝑑, 𝑒, } 

4.  𝑁(𝑐) = [𝑎, 𝑏, 𝑑], 𝑁(𝑓) = {𝑒, 𝑔}, and 𝑁(𝑑) = {𝑎, 𝑏, 𝑐, 𝑒}. 

Section 3.0 Measures of Centrality 

 

Centrality measures are often used as tools in the analysis of networks. They help identify and 

quantify the importance of individual nodes or edges. To a certain extent, it is a measure of 

central tendency that can provide insights into the network’s structure. The centrality measures 

are defined in such a way that the node or edge assigned the higher number is more central than 

the node or edge assigned a lower number.  

 

Centrality in transportation networks helps us to assess the importance or influence of specific 

network elements, such as nodes (e.g., intersections, bus stops, airports) or edges (e.g., roads, rail 

tracks, flight routes). The central elements are those that play a critical role in facilitating the 

flow of goods, people or information within the network. One might expect a city's business 

district to be close to hubs of high centrality. Also, a disruption near a place of high centrality 

may be more impactful and cause a higher cost to the community than one at a lower centrality, 

Ghazaryan [6].  

 

There are several centrality measures commonly used in transportation network analysis. We 

will define and discuss two, degree centrality and closeness centrality. Degree centrality 

measures the number of connections (edges) a node has in the network.  

 

Definition. The degree centrality of a node 𝑣 in a graph 𝐺 of order 𝑛 > 2 is  

 

                                                          𝐶𝑑(𝑣) =
𝑑𝑒𝑔(𝑣)

𝑛−1
. (1) 

 

In a social network, an influencer has a large number of followers and hence can be identified as 

having a high degree centrality.  In transportation networks, nodes with high degree centrality 

represent critical junctions or hubs, such as major intersections or transportation terminals. It is a 



simple and intuitive measure but may not capture the importance of nodes in facilitating global 

network connectivity.  

 

Closeness centrality measures how quickly a node can reach all other nodes in the network. 

In transportation networks, nodes with high closeness centrality are essential for reducing travel 

times and improving accessibility. Airports or transit centers with high closeness centrality 

enhance connectivity within a region. To define closeness, we need a measure of average 

closeness between nodes.  

 

Definition. Let 𝑢 and 𝑣 be nodes in a connected graph 𝐺. Then 

  

a. a  𝑢 − 𝑣  geodesic is a 𝑢 − 𝑣 path of minimum length; 

b. the distance 𝑑(𝑢, 𝑣) between 𝑢 and 𝑣 is the number of edges in any 𝑢 − 𝑣 geodesic. 

 

The average distance between node 𝑣 and the remaining nodes in 𝑉(𝐺)  can then be calculated, 

 

                                                        
∑ 𝑑(𝑣,𝑢)𝑢∈𝑉(𝐺)

𝑛−1
  (2) 

 

and define closeness centrality to be its reciprocal as given in (3). Since the average distance is 

greater than one,  𝐶𝑐(𝑣) < 1 and the smaller the average distance the larger the value of 𝐶𝑐(𝑣) 

indicating greater closeness centrality. 

 

Definition. The closeness centrality of a node 𝑣 in a graph 𝐺 of order 𝑛 > 2 is  

 

 𝐶𝑐(𝑣) =
𝑛−1

∑ 𝑑(𝑣,𝑢)𝑢∈𝑉(𝐺)

. (3)  

 

Consider Figure 2, a standard figure used to illustrate centrality measures in texts and papers. 

 

Example 1.  Calculate the degree and closeness centrality for node 𝑎 in Graph H shown in 

Figure 2. 

 

Solution. Since the order of the graph 𝐻 is 𝑛 = 7, and 𝑑𝑒𝑔(𝑎) = 3, then 𝐶𝑑(𝑎) = 3/6 = 1/2. To 

compute the closeness centrality of node 𝑎, we first identify a geodesic with node 𝑎 and every 

other node and then calculate its distance. It is easy to see 𝑑(𝑎, 𝑏) = 𝑑(𝑎, 𝑐) = 𝑑(𝑎, 𝑑) = 1 since 

the geodesics are single edges. Path {𝑎, 𝑑, 𝑒} is an 𝑎 − 𝑒 path with just two edges (minimum 

length) and hence a geodesic, 𝑑(𝑎, 𝑒) = 2.  Likewise, the reader can verify 𝑑(𝑎, 𝑓) = 𝑑(𝑎, 𝑔) =
3. Therefore, 

 

 𝐶𝑑(𝑎) =
6

1+1+1+2+3+3
= 6/11.   

 

Solving Exercise 3, the reader will show that node 𝑑 is the most central node in Graph H. The 

reader will verify 𝐶𝑑(𝑑) = 0.67 and 𝐶𝑐(𝑑) = 0.75. Node 𝑑 also has the property that if 

removed, the graph becomes disconnected and is separated into two component graphs. The 

same can be said for removing edge {𝑑, 𝑒}. This characteristic is obviously important in 



analyzing the disruption of a transportation network and can be summarized in the following 

definitions. 

 

Definition. In a disconnected graph, each separate connected subgraph of 𝐺 is a component of G. 

 

Definition. A bridge is an edge of a graph whose removal increases the number of components 

of a graph. 

 

Definition. A cut-node of a graph 𝐺 is a node whose deletion increases the number of 

components of the graph. 

 

In summary, centrality measures play a vital role in analyzing and managing transportation 

networks. They help identify the most critical elements and guide decision-making processes to 

improve network efficiency, safety and resilience. Understanding centrality measures helps 

optimize traffic signal timing, manage congestion and implement rerouting strategies during 

incidents.  Identifying nodes with high centrality is crucial for efficient emergency response 

planning and ensuring rapid access to critical locations. Centrality measures can aid in 

optimizing public transportation routes, determining the locations of key transit hubs and 

enhancing the overall transportation system.  Identifying central nodes can help optimize the 

logistics of moving goods, minimizing transportation costs and improving supply chain 

efficiency. Finally, assessing centrality can reveal critical nodes vulnerable to both natural and 

targeted disruptions, guiding resilience strategies and disaster recovery planning. 

 

The choice of centrality measure should align with the specific goals and characteristics of the 

transportation network under analysis. We have only demonstrated two measures of centrality in 

this section, but there are other measures that the reader may wish to investigate such as 

betweenness and eigenvector centrality. For example, see either Cockburn [2] or Watson [5] for 

a very accessible discussion and examples of betweenness and eigenvector centrality. 
 

Exercise 3. Compute the degree and closeness centrality of each node in Graph H shown in 

Figure 2.  

 

Solution. 

 

node 𝑎 b c d e f g 

deg 𝑣 3 3 3 4 3 2 2 

𝐶𝑑(𝑣) 0.5 0.5 0.5 0.67 0.5 0.33 0.33 

𝐶𝑐(𝑣) 0.54 0.54 0.54 0.75 0.67 0.46 0.46 

 

Exercise 4. Compute the degree and closeness centrality of each node in Graph J shown in 

Figure 3. 



 

Figure 3. Graph J  

 

Solution. 

node 𝑎 b c d e f g 

deg 𝑣 3 2 3 3 3 2 2 

𝐶𝑑(𝑣) 0.5 0.33 0.5 0.5 0.5 0.33 0.33 

𝐶𝑐(𝑣) 0.55 0.4 0.55 0.67 0.6 0.43 0.43 

Section 4.0 Modeling a Transportation Disruption 

 

Cost and efficiency normally play an important role in analyzing a transportation network. If the 

network is disrupted in some way, then the disruption can be measured in a loss of efficiency or 

possibly an increase in transportation cost. We have likely all experienced a disruption in our 

travel due to an accident or construction on a highway. Xie [1] provides the example of the 

collapse of the I-35 Mississippi River bridge in Minneapolis, MN in 2007. This collapse cut a 

major commuting route to downtown Minneapolis costing an estimated $400,000 to reroute 

traffic for just one day. The I-35 bridge collapse was due to a design flaw. However, many 

transportation disruptions happen due to natural causes. A subway terminal below street level, 

and possibly below sea-level, is subject to the risk of a weather-related flood event or even future 

flooding due to climate change. In this section we demonstrate models that allow us to analyze 

this type of transportation risk. 

 

First, let’s consider the cost. With our edges labeled, 𝐸(𝐺) = {𝑒1, . . . , 𝑒𝑛}, we can associate with 

each edge a cost, {𝑐1, . . . , 𝑐𝑛}. This association can be made explicit in the pair {𝑒𝑖 , 𝑐𝑖}. This cost 

may vary with time or be constant. For example, one component of interest for cost in a 

transportation network is travel time. Travel time may be higher during the 7am-9am and 4pm-

6pm commuting times. However, for our purposes, let’s consider it to be an average commuting 

time for a given duration. We summarize the analysis in Example 2 where the travel time is 

indicated by edge.  

 

Example 2.  Consider Figures 4 and 5. Edge travel time, 𝑡𝑖, for edge 𝑒𝑖 is shown in the pair 

{𝑒𝑖 , 𝑡𝑖} used to label each edge. We calculate the time to travel from one node to another by 

summing the travel times in the path taken. To travel from node 𝑑 to node 𝑔 by the path 



{𝑑, 𝑒, 𝑓, 𝑔} takes a travel time of 4 + 7+ 4 = 15. If either edge 𝑒4 or edge 𝑒6 is eliminated or 

node 𝑒 removed, shown in Figure 5, then the traveler would be forced to take path {𝑑, 𝑏, 𝑐, 𝑓, 𝑔} 

resulting in a travel time of 16.  Hence, either of these three disruptions results in an increase in 

travel time of 1.   

 

 

Figure 4. Edge Time           Figure 5. Node 𝑒  Figure 6. Edge  Figure 7. Edge  

    Removed  Capacities  Removed 

 

If the network represents a rail or subway system, then utilization rate or capacity may be a better 

choice for the measurement of interest, although time spent at the station may also be relevant.  

A more thorough and technical discussion of capacity for transportation networks can be found 

in Yang [3]. In our case, the capacity may be the average number of persons the particular link 

(represented by the edge) can accommodate in a specified time duration. For illustration, in 

Figure 6 we have labeled each edge with its capacity. We consider a disruption resulting in the 

loss of service within the network. This loss may be due to the loss of service at a node or along 

a path. We will denote the capacity for edge 𝑒𝑘 using the pair {𝑒𝑘, 𝑐𝑘} in labeling the graph. 

When the edges are known, we simplify the labeling by just using the value 𝑐𝑘 as shown in 

Figures 6 and 7.  Let the normal capacity for an edge 𝑒 be denoted 𝐶𝑎𝑝(𝑒) and the capacity for 

the edge after a disruption be denoted by 𝐶𝑎𝑝𝑑(𝑒). In a transportation network that is represented 

by a graph of order 𝑛, the total capacity of a network that has not been disrupted is just the sum 

of the edge capacities,  

𝑇𝐶 = ∑ 𝐶𝑎𝑝(𝑒)𝑒∈𝐸(𝐺) .   (4) 

 

After a disruption to the network, we recalculate the capacity for each edge so that 𝐶𝑎𝑝𝑑(𝑒) = 0 

if the edge has been totally disabled or some fraction of the normal capacity if the link has been 

impaired due to the disruption. We illustrate these definitions and calculations in Example 3. 

 

Example 3.  Consider the graph with edge capacities illustrated in Figure 6. We have a total 

capacity in this network of 

 𝑇𝐶 = 2 + 3 + 6 + 7 + 3+ 3+ 4 = 28.  

In Figure 7, edge 𝑒1 has been removed resulting in the isolation of node 𝑎, and hence a loss in 

capacity of 2 since 𝐶𝑎𝑝𝑑(𝑒1) = 0. So, the total capacity after the disruption is 𝑇𝐶𝑑 = 26. 



Therefore, after the disruption the network capacity was decreased by 1 − 26/28 = 0.071 or 

7.1%.  

  

The calculation in Example 3 can be carried out again and again as further disruptions occur and 

repairs are made. However, if a disruption causes the network to become disconnected into 

component subgraphs, then clearly something has happened to cause a loss of network efficiency 

not measured by the sum of the edge capacities. Not being able to get from one part of the 

network to another part within the network needs to be measured.  To model this loss of 

efficiency, we will adopt a model from power networks that measures a  loss of connection when 

a power network is disrupted, see Cockburn [2]. First define 

 

 𝛽(𝑣) = 𝑁𝑔(𝑣)/𝑇𝐶𝑑 (5) 

 

where 𝑁𝑔(𝑣) is the capacity of the largest connected subgraph containing 𝑣 after the disruption. 

Then define  �̂�𝑎𝑝𝑑(𝑒) = 𝛽(𝑣) ⋅ 𝐶𝑎𝑝𝑑(𝑒) for each edge adjacent to 𝑣. Notice �̂�𝑎𝑝𝑑(𝑒) is well 

defined. If an edge is adjacent to both nodes 𝑢 and 𝑣, then 𝑢 and 𝑣 are necessarily in the same 

connected subgraph and 𝛽(𝑢) = 𝛽(𝑣).  We will call �̂�𝑎𝑝𝑑(𝑒) the efficiency capacity of edge 𝑒 

after the disruption.  Observe that 𝛽(𝑣) is just a proxy for the percentage of individuals in the 

network that can utilize the capacity of those edges. If the network remains connected after the 

disruption, then 𝑁𝑔(𝑣) = 𝑇𝐶𝑑 so that 𝛽(𝑣) = 1 for each remaining node 𝑣 and the efficiency 

capacity is just equal to the edge capacity. In this case, the decrease in network efficiency is just 

the decrease in network capacity. However, if the network becomes disconnected, the decrease in 

network efficiency is given by  

 1 −
1

𝑇𝐶
(�̂�𝑎𝑝𝑑(𝑒1) + �̂�𝑎𝑝𝑑(𝑒2)+. . . +�̂�𝑎𝑝𝑑(𝑒𝑛)). (6) 

We illustrate in Example 4. 

                
   Figure 8. Graph K  Figure 9. Bridge {𝑑, 𝑒} 

removed 

 

Example 4. Consider the network modeled by Graph K shown in Figure 8. Take 𝐶𝑎𝑝(𝑒𝑘) = 2 

for all nine edges.  We have 𝑇𝐶 = 18. Suppose the bridge, edge {𝑑, 𝑒} is removed, shown in 

Figure 9. Then �̂�𝑎𝑝𝑑({𝑑, 𝑒}) = 0. Also, we see in Figure 9 that the cause of the disruption 

damaged the station at node 𝑒, causing a loss in capacity to the connecting links (adjacent edges 

{𝑒, 𝑓} and {𝑒, 𝑔}). The resulting total capacity of the network after the disruption is 𝑇𝐶𝑑 = 14. 

However, the disruption has also disconnected the network into two components. Let’s compute 



the loss of network efficiency. 𝛽(𝑣) = 5/7 for nodes 𝑎, 𝑏, 𝑐, and 𝑑. 𝛽(𝑣) = 2/7 for nodes 𝑒, 𝑓, 

and 𝑔. Hence,  

           1 −
1

𝑇𝐶
(�̂�𝑎𝑝𝑑(𝑣1) + ⋯ + �̂�𝑎𝑝𝑑(𝑣𝑛)) = 1 −

1

18
(

5

7
(2 + 2 + 2 + 2 + 2) +

2

7
(1 + 1 + 2)) = 0.54.  

 

Therefore, the disruption causing the link represented by edge {𝑑, 𝑒} to be disabled and 

damaging the station at node 𝑒, resulted in a loss of network capacity by 4/18 or 22.2%, but the 

network efficiency was reduced by 54%, reflecting the fact that 5/7 of the network capacity was 

cut-off from the other 2/7 of the network. If further disruptions occur, the calculation can be 

made again with each disruption showing a further loss in capacity and efficiency.  

 

Watson [5], builds a methodological framework for simulating failure and recovery of rail 

networks under compound natural and opportunistic hazards. The idea behind the compound 

hazard is that a natural hazard, such as flooding, causes a disruption or failure in the network. In 

its weakened, more vulnerable state, there is an increased likelihood of an opportunistic enemy 

attacking the same network before recovery begins. In their development of this framework, 

Watson [5] uses centrality to help identify the potential targets of an opportunistic attack, where 

the components of greatest centrality become the object of the strike. We illustrate this idea 

through Exercise 5. 

 
     Figure 8. Graph M 

 

Exercise 5. Graph M in Figure 8 models a light rail system with a station (node c) and rail (edge 

{e, f}) both in flood prone areas. An engineer is studying the risk posed by a 100-year flood 

event followed by an opportunistic targeted attack. In the event of a 100-year flood, assume the 

station at node c and its adjacent rails are totally disabled and the capacity of the rail represented 

by edge {e, f} is reduced by 50%. 

 

A. Calculate the capacity of the network before the flood. 

B. After the 100-year flood event, recalculate the capacity of the network. 

C. What is the percentage loss in capacity and the percentage loss in network efficiency? 

D. Calculate degree and closeness centrality of each node remaining after the flood event. 

E. The engineer assumes a targeted attack will occur immediately after the flood event at the 

node with the highest closeness centrality. This attack will remove the adjacent rail with 

the highest capacity and leave the other adjacent rails unaffected. Recalculate the loss in 

network capacity and loss of network efficiency.  



Solution. 

A. 𝑇𝐶 = 3 + 2 + 4 + 3 + 3+ 4+ 5 + 6 + 4 = 34, see Figure 8. 

B. 𝑇𝐶𝑑 = 3+ 2 + 0 + 0 + 3+ 4+ 5 + 3 + 4 = 24, see Figure 9. 

C. Network capacity and network efficiency are reduced by 29%. 𝛽(𝑣)/24 =1 for each node 

since the model graph is still connected after the flood: 1 − 24/34 = 0.29. 

D.  

   node 𝑎 b d e f g h 

deg 𝑣 2 3 3 3 1 1 1 

𝐶𝑑(𝑣) 0.33 0.5 0.5 0.5 0.17 0.17 0.17 

𝐶𝑐(𝑣) 0.50 .55 .67 .60 .40 .40 .375 

E. The nodes with the largest centrality measures are 𝐶𝑑(𝑏) = 𝐶𝑑(𝑑) = 𝐶𝑑(𝑒) = 0.5 and 

𝐶𝑐(𝑑) = 0.67. Therefore, the targeted attack will take place at node d, disabling edge 

{d,e} since it is the adjacent edge with the highest capacity, Figure 10. 

 

   
Figure 9:  After the  Figure 10: After the 

 flood event   targeted attack 

 

𝑇𝐶𝐴𝑡𝑡𝑎𝑐𝑘 = 19. For nodes 𝑎, 𝑏, 𝑑, and ℎ, 𝛽(𝑣)/19 = 12/19 and for nodes 𝑒, 𝑓, and 𝑔, 

𝛽(𝑣)/19 = 7/19. After the two disruptions, the reduction in network capacity is 1 −
19/34 = 0.44. The network efficiency reduction is 70%,   

1 −
1

34
(

12

19
(2 + 3 + 3 + 4) +

7

19
(3 + 4)) = 0.70. 

Section 5.0 Further work or projects 

   
        Figure 11. Graph simplification 

 

A graph modeling a transportation network may be further simplified. For example, connected 

nodes in a subgraph may be combined. In the subgraph shown in Figure 11, {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, the 

nodes and edges circled may be combined into a single node B. In this case, if the edges are 

assigned a specific value for capacity, then the total capacity of the edges included in the new 

node is assigned to the new node. For example, in Figure 11, if 𝐶𝑎𝑝(𝑒1) =. . . = 𝐶𝑎𝑝(𝑒4) = 3, 



then the new node B is assigned a capacity of 12. 

 

Project. Identify a local transportation network of interest. Model the network with a graph. You 

may wish to use a simplified model with certain subgraphs combined into nodes. Calculate node 

centrality measurements. What is the importance of the more central nodes? Estimate the edge 

capacities with higher usage links receiving a higher edge capacity measure. Analyze the risk of 

disruption by experimenting with node and edge removals. Use travel time if it is of more 

interest than capacity. In this scenario, alternate routes must be considered in case of a 

disruption. 
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